Git Schulung - Einsteiger

Git-Schulung — Einsteiger

Git-Schulung

Einsteiger : Praxis-Workshop

11T -m "initial m)}

e

glt commlt glt branch | glt push

Prasenz - 4 Stunden

Version: 1.0
Zielgruppe: Einsteiger
Format: Prisenz / Selbststudium

Ulrich Radig Seite 1

Git Schulung - Einsteiger

Inhaltsverzeichnis

Git-SCNUIUNG — EINS IO cei i iiiiiiiee ettt e e e e e e e e st e e e e e s satbeeeeeesasaeeeeeesnsssnnnnnnnnnnn 1
FAT= e F=T Yo o 1] (U oY -SSP 3
Vo] =[O =1 VT =L o DO OO PP PP PP PPPPIN 3
1. Einstieg — Was ist Git? (Ca. 20 IMINULEN)....ueeiieiiiiieeeeeeeeiteeee e eeeitreeeeeeeetreeeeeeeeesessssrasessannaaanes 4
2. Git installieren & erstes Repository (30 MINULEN).......cceieiiiiieeeeeiiiieee e 5
3. Die wichtigsten Git-Befehle (60 MINUEEN).....c.cccciiiiiiiiiiiic e 6
4. Branches verstehen (45 IMINUEEN)......uuuuiveeeieeiieeeeeeeeee e e e e e e e e eete e e e e e e eesae s 7
5. Git vS. GItHUD VS. GitLab....ccoveiiiiiiiie e e 8
6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 MINUTEN)....ueviiiieirieieiiieiieee e 9
7. Fehler beheben & Sicherheit (ca. 35 MINUTEN).......coooiiiiiiiiiiiiireeeeeeeeeeeeeceeeeeeeeeee e 10
8. Tags & Versionen (V1.0, VL. 1) ...ttt ettt ttee e e e e e e e e e e e e e e e e aaaaaaaaas 11
9. Best Practices & ADSCIIUSS. ...c...eiiiiiiiiiii et s 12

FAN] o P Y Y=Y o1 (ol = u (Y ISR 12

Ulrich Radig Seite 2

Git Schulung - Einsteiger

Ziel der Schulung

Nach dieser Schulung kénnen die Teilnehmer: - Git im Alltag sicher nutzen - Anderungen sauber
versionieren - Branches verstehen und anwenden - Mit GitHub / GitLab arbeiten - Typische
Fehler selbst beheben

Wichtig: Fokus auf Praxis, kein unnétiger Theorieballast.

Voraussetzungen
e Laptop (Windows / macOS / Linux)
e Internetzugang
e Texteditor (VS Code empfohlen, aber nicht Pflicht)

e Keine Git-Vorkenntnisse notig

Ulrich Radig Seite 3

Git Schulung - Einsteiger

1. Einstieg — Was ist Git? (ca. 20 Minuten)

Was ist das Problem ohne Git?

Viele Projekte starten ohne Versionsverwaltung. Typische Situationen: - Mehrere Kopien eines
Projekts: projekt_final, projekt_final2, projekt_final_neu - Niemand weiB, welche
Version aktuell ist - Anderungen lassen sich nicht sauber zuriickverfolgen - Fehler lassen sich
nicht einfach riickgéngig machen

Was Git l6st
Git speichert den Verlauf eines Projekts: - Jede Anderung ist dokumentiert - Man kann jederzeit
zu einem friheren Stand zurlick - Mehrere Personen kénnen parallel arbeiten

Was Git ist
e Ein lokales Versionsverwaltungssystem
e Liuft auf deinem Rechner

e Funktioniert auch ohne Internet

Was Git nicht ist
e Kein Backup-System
e Kein GitHub

e Kein Projektmanagement-Tool

Merksatz

Git ist eine Zeitmaschine fir Dateien.

@ Wissenswertes: Was bedeutet ,,Git“?
Git ist kein Akronym, sondern einfach der Name eines Werkzeugs zur Versionsverwaltung.
Der Name stammt von Linus Torvalds, dem Erfinder von Git.
Er sagte dazu sinngemal:
,Ich bin ein egoistischer Bastard und nenne alle meine Projekte nach mir.”
Im britischen Englisch bedeutet ,,git“ umgangssprachlich:
e Nervensage
e Idiot
e Trottel
-» ironisch gemeint, typisch Linus.

Ulrich Radig Seite 4

Git Schulung - Einsteiger

2. Git installieren & erstes Repository (30 Minuten)

Installation
Git muss einmalig installiert werden.

Windows - Download von git-scm.com - Standardoptionen sind ausreichend
macOS - Installation iber Xcode Command Line Tools oder Homebrew
Linux - Installation Giber den Paketmanager

Priifen der Installation
git --version

Wenn eine Versionsnummer erscheint, ist Git korrekt installiert.

Erstes Repository erstellen

Ein Repository ist ein Ordner, der von Git (iberwacht wird.

mkdir git-demo

cd git-demo

git init

Nach git init erstellt Git einen versteckten Ordner . git. Dort speichert Git die komplette
Historie.

Wichtige Begriffe
e Repository: Ein Projekt unter Git-Kontrolle
e Working Directory: Dein aktueller Arbeitsordner

e Commit: Ein gespeicherter Zustand

Ulrich Radig Seite 5

Git Schulung - Einsteiger

3. Die wichtigsten Git-Befehle (60 Minuten)

Grundprinzip
Git arbeitet in drei Stufen: 1. Dateien dndern 2. Anderungen vormerken 3. Anderungen
speichern

git status
Zeigt jederzeit: - Welche Dateien gedndert wurden - Welche Dateien fiir den Commit
vorgemerkt sind

git status
git add
Markiert Dateien fiir den ndchsten Commit.

git add main.c

Oder alle Dateien:

git add .

git commit

Speichert den aktuellen Stand dauerhaft.
git commit -m "Initiale Version"
git log

Zeigt die Commit-Historie.

git log --oneline

Typischer Ablauf

git status

git add .
git commit -m "Beschreibung der Anderung"

Ulrich Radig Seite 6

Git Schulung - Einsteiger

4. Branches verstehen (45 Minuten)

Was ist ein Branch?
Ein Branch ist ein alternativer Entwicklungszweig. - Er zeigt auf einen bestimmten Commit -
Anderungen im Branch beeinflussen main nicht

Warum Branches sinnvoll sind
e Neue Funktionen testen
e Fehler beheben

e Experimente ohne Risiko

Branch erstellen und wechseln
git switch -c feature-test

Anderungen im Branch
e Dateien dndern

e Commit erstellen

Zuriick nach main und mergen
git switch main
git merge feature-test

Merge-Konflikte
Konflikte entstehen, wenn: - Die gleiche Zeile in zwei Branches gedndert wurde

Git stoppt dann und bittet um eine Entscheidung.

Ulrich Radig Seite 7

Git Schulung - Einsteiger

5. Git vs. GitHub vs. GitLab

Git
Git ist ein lokales Versionsverwaltungssystem. - Lauft auf deinem Rechner - Funktioniert ohne
Internet - Speichert die komplette Projekt-Historie

Git kann: - Commits - Branches - Merges - Tags

Git kann nicht: - Zusammenarbeit im Web - Benutzerverwaltung - Issue-Tracking
GitHub

GitHub ist eine Online-Plattform fiir Git-Repositories.

Eigenschaften: - Web-Oberflache - Zusammenarbeit im Team - Pull Requests - Issues - ClI/CD
(GitHub Actions)

Typische Nutzung: - Open-Source-Projekte - Private Projekte - Kleine bis mittlere Teams
GitLab
GitLab ist ebenfalls eine Git-Plattform, aber starker auf Teams und Firmen ausgelegt.

Eigenschaften: - Cloud oder selbst hostbar - Integriertes Cl/CD - Benutzer- und
Rechteverwaltung

Typische Nutzung: - Firmenprojekte - Interne Repositories - Embedded- und Industrieprojekte

Vergleich

(0]
—+
(0]
s
I
c

o
(0]
P
=
W)

o

Thema

Lauft lokal
Internet notig

Versionsverwaltu
ng
Web-Oberflache

XK
© K
N K

Teamarbeit
Selbst hosten
Cl/CD

X X X X
XK
XX

Merksatz

Git ist das Werkzeug — GitHub und GitLab sind die Plattformen.

Ulrich Radig Seite 8

Git Schulung - Einsteiger
6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)

Was ist ein Remote?
Ein Remote ist ein Repository auf einem Server. - GitHub - GitLab - Firmeninterner Server

Wichtige Begriffe
e clone: Projekt herunterladen
e pull: Anderungen holen

e push: Anderungen senden

Repository klonen
git clone <repo-url>

Anderungen holen
git pull

Anderungen senden
git push

Typische Fehler
e Push abgelehnt - vorher git pull

e Falscher Branch - Branch priifen

Ulrich Radig Seite 9

Git Schulung - Einsteiger

7. Fehler beheben & Sicherheit (ca. 35 Minuten)

Anderungen an Dateien verwerfen
git restore datei.txt

Letzten Commit korrigieren
git reset --soft HEAD~1

Anderungen riickgingig machen (sicher)
git revert <commit-id>

Wichtige Regel

Was gepusht wurde, sollte nicht mit reset geandert werden.

Ulrich Radig Seite 10

Git Schulung - Einsteiger

8. Tags & Versionen (v1.0, v1.1)

Wozu Tags?
Tags markieren feste Versionen im Projektverlauf.

Typische Einsatzfalle: - Firmware-Release (v1.0, v1.1) - Software-Versionen - reproduzierbare
Builds

Ein Tag zeigt immer auf einen bestimmten Commit.

Tag erstellen
git tag v1.0

Tag mit Beschreibung (empfohlen)
git tag -a v1.1 -m "Bugfix Release"

Tags anzeigen
git tag

Tags pushen

StandardmaRig werden Tags nicht automatisch gepusht.
git push origin v1.1

Oder alle Tags:

git push origin --tags

Embedded-Hinweis
e Tag = exakt reproduzierbarer Firmware-Stand

e Sehr wichtig fur Support & Fehlersuche

Ulrich Radig Seite 11

Git Schulung - Einsteiger

9. Best Practices & Abschluss

Best Practices
e Kleine, saubere Commits
e Sinnvolle Commit-Messages
e .gitignore fir:
o Build-Ordner (Embedded)

o node_modules (Web)

Abschluss
e Fragen klaren

e Nichste Schritte aufzeigen

Anhang - Spickzettel

git status aktueller Zustand
git add - Anderungen vormerken
git commit - Anderungen speichern
git log - Historie anzeigen
git switch - Branch wechseln

git pull - Anderungen holen

git push - Anderungen senden
git tag - Version markieren

Ulrich Radig Seite 12

Git Schulung - Einsteiger

Trainer-Version vs. Teilnehmer-Version
Teilnehmer-Version
Diese Version ist fir Selbststudium und Nachschlagen gedacht.

Merkmale: - Erkldrtexte vollstindig - Beispiele und Merksitze - Ubungen ohne
Losung

Trainer-Version
Diese Version enthalt zusatzliche Hinweise fiir die Durchfiihrung.

Zusatzlich enthalten: - Trainer-Notizen - typische Fragen - empfohlene
Reihenfolge - Zeitmanagement-Hinweise

Empfehlung: - Teilnehmer bekommen die Teilnehmer-Version - Trainer arbeitet
mit der Trainer-Version

Ulrich Radig Seite 13

Git Schulung - Einsteiger

Ubungsaufgaben
Kapitel 1 — Git verstehen
Trainer-Notizen

e Teilnehmern klar machen: Git schiitzt vor Datenverlust

e Angst nehmen: Git kann fast nichts ,kaputt machen”

Ubung 1: - Erklére in eigenen Worten den Unterschied zwischen Git und GitHub - Warum
funktioniert Git auch ohne Internet?

Kapitel 2 — Repository

Trainer-Notizen
e .git nicht anfassen oder |6schen

e Betonung: Git verandert Dateien nicht automatisch

Ubung 2: 1. Lege ein neues Verzeichnis an 2. Initialisiere ein Git-Repository 3. Priife den Status

Kapitel 3 — Commits

Trainer-Notizen
e Immer wieder git status zeigen
e Commit-Messages erklaren wie ein Anderungsprotokoll

Ubung 3: 1. Lege eine Datei an (main.c oder index.html) 2. Erstelle drei Commits mit
sinnvollen Nachrichten 3. Zeige die Historie an

Kapitel 4 — Branches

Trainer-Notizen
e Konflikte bewusst erzeugen

e Zeigen, dass Konflikte 16sbar sind

Ubung 4: 1. Erstelle einen Feature-Branch 2. Andere eine Datei 3. Merge den Branch zuriick
nachmain

Ulrich Radig Seite 14

Git Schulung - Einsteiger

Kapitel 5 — GitHub / GitLab

Trainer-Notizen
e Diese Abgrenzung nimmt viel Verwirrung

e Erst Git erklaren, dann Plattform

Ubung 5: 1. Klone ein Repository 2. Andere eine Datei 3. Push die Anderung

Kapitel 6 — Fehler beheben

Trainer-Notizen
e HTTPS fir Einsteiger empfehlen

e Remote als “gemeinsamen Treffpunkt” erklaren

Ubung 6: 1. Andere eine Datei 2. Verwerfe die Anderung mit git restore

Kapitel 7 — Tags

Trainer-Notizen
e Unterschied reset vs. revert klar machen

e Sicherheit betonen

Trainer-Notizen
e Tags sind read-only Markierungen

e Nicht fur tagliche Entwicklung nutzen

Ubung 7: 1. Erstelle einen Tag v1.0 2. Erstelle einen annotierten Tag v1.1 3. Zeige alle Tags an

Ulrich Radig

Seite 15

Git Schulung - Einsteiger
Release-Workflow — Tag - ZIP - Weitergabe
Ziel

Einen klar definierten Stand weitergeben (z. B. Firmware oder Web-Release).

Schritt 1 — Sauberen Stand prifen
git status
Ergebnis sollte sein:

working tree clean

Schritt 2 — Tag setzen

git tag -a v1.0 -m "Release v1.0"

Schritt 3 — Tag pushen

git push origin v1.0

Schritt 4 — ZIP aus Tag erzeugen

git archive --format=zip v1.0 -o projekt-v1.0.zip

Ergebnis
e ZIP enthilt exakt den getaggten Stand
e Keine Build-Artefakte

e Reproduzierbar

Embedded-Hinweis
e |deal fur Firmware-Weitergabe

e Support kann immer exakt diesen Stand auschecken

Ulrich Radig Seite 16

	Git-Schulung – Einsteiger
	Ziel der Schulung
	Voraussetzungen
	1. Einstieg – Was ist Git? (ca. 20 Minuten)
	Was ist das Problem ohne Git?
	Was Git löst
	Was Git ist
	Was Git nicht ist
	Merksatz

	2. Git installieren & erstes Repository (30 Minuten)
	Installation
	Prüfen der Installation
	Erstes Repository erstellen
	Wichtige Begriffe

	3. Die wichtigsten Git-Befehle (60 Minuten)
	Grundprinzip
	git status
	git add
	git commit
	git log
	Typischer Ablauf

	4. Branches verstehen (45 Minuten)
	Was ist ein Branch?
	Warum Branches sinnvoll sind
	Branch erstellen und wechseln
	Änderungen im Branch
	Zurück nach main und mergen
	Merge-Konflikte

	5. Git vs. GitHub vs. GitLab
	Git
	GitHub
	GitLab
	Vergleich
	Merksatz

	6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)
	Was ist ein Remote?
	Wichtige Begriffe
	Repository klonen
	Änderungen holen
	Änderungen senden
	Typische Fehler

	7. Fehler beheben & Sicherheit (ca. 35 Minuten)
	Änderungen an Dateien verwerfen
	Letzten Commit korrigieren
	Änderungen rückgängig machen (sicher)
	Wichtige Regel

	8. Tags & Versionen (v1.0, v1.1)
	Wozu Tags?
	Tag erstellen
	Tag mit Beschreibung (empfohlen)
	Tags anzeigen
	Tags pushen
	Embedded-Hinweis

	9. Best Practices & Abschluss
	Best Practices
	Abschluss

	Anhang – Spickzettel
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen

