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Ziel der Schulung

Nach dieser Schulung kénnen die Teilnehmer: - Git im Alltag sicher nutzen - Anderungen sauber
versionieren - Branches verstehen und anwenden - Mit GitHub / GitLab arbeiten - Typische
Fehler selbst beheben

Wichtig: Fokus auf Praxis, kein unnétiger Theorieballast.

Voraussetzungen
e Laptop (Windows / macOS / Linux)
e Internetzugang
e Texteditor (VS Code empfohlen, aber nicht Pflicht)

e Keine Git-Vorkenntnisse notig
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1. Einstieg — Was ist Git? (ca. 20 Minuten)

Was ist das Problem ohne Git?

Viele Projekte starten ohne Versionsverwaltung. Typische Situationen: - Mehrere Kopien eines
Projekts: projekt_final, projekt_final2, projekt_final_neu - Niemand weiB, welche
Version aktuell ist - Anderungen lassen sich nicht sauber zuriickverfolgen - Fehler lassen sich
nicht einfach riickgéngig machen

Was Git l6st
Git speichert den Verlauf eines Projekts: - Jede Anderung ist dokumentiert - Man kann jederzeit
zu einem friheren Stand zurlick - Mehrere Personen kénnen parallel arbeiten

Was Git ist
e Ein lokales Versionsverwaltungssystem
e Liuft auf deinem Rechner

e Funktioniert auch ohne Internet

Was Git nicht ist
e Kein Backup-System
e Kein GitHub

e Kein Projektmanagement-Tool

Merksatz

Git ist eine Zeitmaschine fir Dateien.

@ Wissenswertes: Was bedeutet ,,Git“?
Git ist kein Akronym, sondern einfach der Name eines Werkzeugs zur Versionsverwaltung.
Der Name stammt von Linus Torvalds, dem Erfinder von Git.
Er sagte dazu sinngemal:
,Ich bin ein egoistischer Bastard und nenne alle meine Projekte nach mir.”
Im britischen Englisch bedeutet ,,git“ umgangssprachlich:
e Nervensage
e Idiot
e Trottel
-» ironisch gemeint, typisch Linus.
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2. Git installieren & erstes Repository (30 Minuten)

Installation
Git muss einmalig installiert werden.

Windows - Download von git-scm.com - Standardoptionen sind ausreichend
macOS - Installation iber Xcode Command Line Tools oder Homebrew
Linux - Installation Giber den Paketmanager

Priifen der Installation
git --version

Wenn eine Versionsnummer erscheint, ist Git korrekt installiert.

Erstes Repository erstellen

Ein Repository ist ein Ordner, der von Git (iberwacht wird.

mkdir git-demo

cd git-demo

git init

Nach git init erstellt Git einen versteckten Ordner . git. Dort speichert Git die komplette
Historie.

Wichtige Begriffe
e Repository: Ein Projekt unter Git-Kontrolle
e  Working Directory: Dein aktueller Arbeitsordner

e Commit: Ein gespeicherter Zustand
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3. Die wichtigsten Git-Befehle (60 Minuten)

Grundprinzip
Git arbeitet in drei Stufen: 1. Dateien dndern 2. Anderungen vormerken 3. Anderungen
speichern

git status
Zeigt jederzeit: - Welche Dateien gedndert wurden - Welche Dateien fiir den Commit
vorgemerkt sind

git status
git add
Markiert Dateien fiir den ndchsten Commit.

git add main.c

Oder alle Dateien:

git add .

git commit

Speichert den aktuellen Stand dauerhaft.
git commit -m "Initiale Version"
git log

Zeigt die Commit-Historie.

git log --oneline

Typischer Ablauf

git status

git add .
git commit -m "Beschreibung der Anderung"
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4. Branches verstehen (45 Minuten)

Was ist ein Branch?
Ein Branch ist ein alternativer Entwicklungszweig. - Er zeigt auf einen bestimmten Commit -
Anderungen im Branch beeinflussen main nicht

Warum Branches sinnvoll sind
e Neue Funktionen testen
e Fehler beheben

e Experimente ohne Risiko

Branch erstellen und wechseln
git switch -c feature-test

Anderungen im Branch
e Dateien dndern

e Commit erstellen

Zuriick nach main und mergen
git switch main
git merge feature-test

Merge-Konflikte
Konflikte entstehen, wenn: - Die gleiche Zeile in zwei Branches gedndert wurde

Git stoppt dann und bittet um eine Entscheidung.
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5. Git vs. GitHub vs. GitLab

Git
Git ist ein lokales Versionsverwaltungssystem. - Lauft auf deinem Rechner - Funktioniert ohne
Internet - Speichert die komplette Projekt-Historie

Git kann: - Commits - Branches - Merges - Tags

Git kann nicht: - Zusammenarbeit im Web - Benutzerverwaltung - Issue-Tracking
GitHub

GitHub ist eine Online-Plattform fiir Git-Repositories.

Eigenschaften: - Web-Oberflache - Zusammenarbeit im Team - Pull Requests - Issues - ClI/CD
(GitHub Actions)

Typische Nutzung: - Open-Source-Projekte - Private Projekte - Kleine bis mittlere Teams
GitLab
GitLab ist ebenfalls eine Git-Plattform, aber starker auf Teams und Firmen ausgelegt.

Eigenschaften: - Cloud oder selbst hostbar - Integriertes Cl/CD - Benutzer- und
Rechteverwaltung

Typische Nutzung: - Firmenprojekte - Interne Repositories - Embedded- und Industrieprojekte
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Merksatz

Git ist das Werkzeug — GitHub und GitLab sind die Plattformen.
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6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)

Was ist ein Remote?
Ein Remote ist ein Repository auf einem Server. - GitHub - GitLab - Firmeninterner Server

Wichtige Begriffe
e clone: Projekt herunterladen
e pull: Anderungen holen

e push: Anderungen senden

Repository klonen
git clone <repo-url>

Anderungen holen
git pull

Anderungen senden
git push

Typische Fehler
e Push abgelehnt - vorher git pull

e Falscher Branch - Branch priifen
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7. Fehler beheben & Sicherheit (ca. 35 Minuten)

Anderungen an Dateien verwerfen
git restore datei.txt

Letzten Commit korrigieren
git reset --soft HEAD~1

Anderungen riickgingig machen (sicher)
git revert <commit-id>

Wichtige Regel

Was gepusht wurde, sollte nicht mit reset geandert werden.
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8. Tags & Versionen (v1.0, v1.1)

Wozu Tags?
Tags markieren feste Versionen im Projektverlauf.

Typische Einsatzfalle: - Firmware-Release (v1.0, v1.1) - Software-Versionen - reproduzierbare
Builds

Ein Tag zeigt immer auf einen bestimmten Commit.

Tag erstellen
git tag v1.0

Tag mit Beschreibung (empfohlen)
git tag -a v1.1 -m "Bugfix Release"

Tags anzeigen
git tag

Tags pushen

StandardmaRig werden Tags nicht automatisch gepusht.
git push origin v1.1

Oder alle Tags:

git push origin --tags

Embedded-Hinweis
e Tag = exakt reproduzierbarer Firmware-Stand

e Sehr wichtig fur Support & Fehlersuche
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9. Best Practices & Abschluss

Best Practices
e Kleine, saubere Commits
e Sinnvolle Commit-Messages
e .gitignore fir:
o Build-Ordner (Embedded)

o node_modules (Web)

Abschluss
e Fragen klaren

e Nichste Schritte aufzeigen

Anhang - Spickzettel

git status aktueller Zustand
git add - Anderungen vormerken
git commit - Anderungen speichern
git log - Historie anzeigen
git switch - Branch wechseln

git pull - Anderungen holen

git push - Anderungen senden
git tag - Version markieren
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Trainer-Version vs. Teilnehmer-Version
Teilnehmer-Version
Diese Version ist fir Selbststudium und Nachschlagen gedacht.

Merkmale: - Erkldrtexte vollstindig - Beispiele und Merksitze - Ubungen ohne
Losung

Trainer-Version
Diese Version enthalt zusatzliche Hinweise fiir die Durchfiihrung.

Zusatzlich enthalten: - Trainer-Notizen - typische Fragen - empfohlene
Reihenfolge - Zeitmanagement-Hinweise

Empfehlung: - Teilnehmer bekommen die Teilnehmer-Version - Trainer arbeitet
mit der Trainer-Version
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Ubungsaufgaben
Kapitel 1 — Git verstehen
Trainer-Notizen

e Teilnehmern klar machen: Git schiitzt vor Datenverlust

e Angst nehmen: Git kann fast nichts ,kaputt machen”

Ubung 1: - Erklére in eigenen Worten den Unterschied zwischen Git und GitHub - Warum
funktioniert Git auch ohne Internet?

Kapitel 2 — Repository

Trainer-Notizen
e .git nicht anfassen oder |6schen

e Betonung: Git verandert Dateien nicht automatisch

Ubung 2: 1. Lege ein neues Verzeichnis an 2. Initialisiere ein Git-Repository 3. Priife den Status

Kapitel 3 — Commits

Trainer-Notizen
e Immer wieder git status zeigen
e Commit-Messages erklaren wie ein Anderungsprotokoll

Ubung 3: 1. Lege eine Datei an (main.c oder index.html) 2. Erstelle drei Commits mit
sinnvollen Nachrichten 3. Zeige die Historie an

Kapitel 4 — Branches

Trainer-Notizen
e Konflikte bewusst erzeugen

e Zeigen, dass Konflikte 16sbar sind

Ubung 4: 1. Erstelle einen Feature-Branch 2. Andere eine Datei 3. Merge den Branch zuriick
nachmain
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Kapitel 5 — GitHub / GitLab

Trainer-Notizen
e Diese Abgrenzung nimmt viel Verwirrung

e Erst Git erklaren, dann Plattform

Ubung 5: 1. Klone ein Repository 2. Andere eine Datei 3. Push die Anderung

Kapitel 6 — Fehler beheben

Trainer-Notizen
e HTTPS fir Einsteiger empfehlen

e Remote als “gemeinsamen Treffpunkt” erklaren

Ubung 6: 1. Andere eine Datei 2. Verwerfe die Anderung mit git restore

Kapitel 7 — Tags

Trainer-Notizen
e Unterschied reset vs. revert klar machen

e Sicherheit betonen

Trainer-Notizen
e Tags sind read-only Markierungen

e Nicht fur tagliche Entwicklung nutzen

Ubung 7: 1. Erstelle einen Tag v1.0 2. Erstelle einen annotierten Tag v1.1 3. Zeige alle Tags an

Ulrich Radig
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Release-Workflow — Tag - ZIP - Weitergabe
Ziel

Einen klar definierten Stand weitergeben (z. B. Firmware oder Web-Release).

Schritt 1 — Sauberen Stand prifen
git status
Ergebnis sollte sein:

working tree clean

Schritt 2 — Tag setzen

git tag -a v1.0 -m "Release v1.0"

Schritt 3 — Tag pushen

git push origin v1.0

Schritt 4 — ZIP aus Tag erzeugen

git archive --format=zip v1.0 -o projekt-v1.0.zip

Ergebnis
e ZIP enthilt exakt den getaggten Stand
e Keine Build-Artefakte

e Reproduzierbar

Embedded-Hinweis
e |deal fur Firmware-Weitergabe

e Support kann immer exakt diesen Stand auschecken
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