
Git Schulung - Einsteiger

Git-Schulung – Einsteiger

Präsenz · 4 Stunden

Version: 1.0
Zielgruppe: Einsteiger
Format: Präsenz / Selbststudium

Ulrich Radig Seite 1

Git Schulung - Einsteiger

Inhaltsverzeichnis

Git-Schulung – Einsteiger..1

Ziel der Schulung...3

Voraussetzungen...3

1. Einstieg – Was ist Git? (ca. 20 Minuten)..4

2. Git installieren & erstes Repository (30 Minuten)...5

3. Die wichtigsten Git-Befehle (60 Minuten)..6

4. Branches verstehen (45 Minuten)...7

5. Git vs. GitHub vs. GitLab..8

6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)..9

7. Fehler beheben & Sicherheit (ca. 35 Minuten)..10

8. Tags & Versionen (v1.0, v1.1)..11

9. Best Practices & Abschluss...12

Anhang – Spickzettel...12

Ulrich Radig Seite 2

Git Schulung - Einsteiger

Ziel der Schulung
Nach dieser Schulung können die Teilnehmer: - Git im Alltag sicher nutzen - Änderungen sauber
versionieren - Branches verstehen und anwenden - Mit GitHub / GitLab arbeiten - Typische
Fehler selbst beheben

Wichtig: Fokus auf Praxis, kein unnötiger Theorieballast.

Voraussetzungen
 Laptop (Windows / macOS / Linux)

 Internetzugang

 Texteditor (VS Code empfohlen, aber nicht Pflicht)

 Keine Git-Vorkenntnisse nötig

Ulrich Radig Seite 3

Git Schulung - Einsteiger

1. Einstieg – Was ist Git? (ca. 20 Minuten)

Was ist das Problem ohne Git?
Viele Projekte starten ohne Versionsverwaltung. Typische Situationen: - Mehrere Kopien eines
Projekts: projekt_final, projekt_final2, projekt_final_neu - Niemand weiß, welche
Version aktuell ist - Änderungen lassen sich nicht sauber zurückverfolgen - Fehler lassen sich
nicht einfach rückgängig machen

Was Git löst
Git speichert den Verlauf eines Projekts: - Jede Änderung ist dokumentiert - Man kann jederzeit
zu einem früheren Stand zurück - Mehrere Personen können parallel arbeiten

Was Git ist
 Ein lokales Versionsverwaltungssystem

 Läuft auf deinem Rechner

 Funktioniert auch ohne Internet

Was Git nicht ist
 Kein Backup-System

 Kein GitHub

 Kein Projektmanagement-Tool

Merksatz

Git ist eine Zeitmaschine für Dateien.

 💡 Wissenswertes: Was bedeutet „Git“?
Git ist kein Akronym, sondern einfach der Name eines Werkzeugs zur Versionsverwaltung.
Der Name stammt von Linus Torvalds, dem Erfinder von Git.
Er sagte dazu sinngemäß:
„Ich bin ein egoistischer Bastard und nenne alle meine Projekte nach mir.“
Im britischen Englisch bedeutet „git“ umgangssprachlich:

 Nervensäge
 Idiot
 Trottel

→ ironisch gemeint, typisch Linus.

Ulrich Radig Seite 4

Git Schulung - Einsteiger

2. Git installieren & erstes Repository (30 Minuten)

Installation
Git muss einmalig installiert werden.

Windows - Download von git-scm.com - Standardoptionen sind ausreichend

macOS - Installation über Xcode Command Line Tools oder Homebrew

Linux - Installation über den Paketmanager

Prüfen der Installation
git --version

Wenn eine Versionsnummer erscheint, ist Git korrekt installiert.

Erstes Repository erstellen
Ein Repository ist ein Ordner, der von Git überwacht wird.

mkdir git-demo
cd git-demo
git init

Nach git init erstellt Git einen versteckten Ordner .git. Dort speichert Git die komplette
Historie.

Wichtige Begriffe
 Repository: Ein Projekt unter Git-Kontrolle

 Working Directory: Dein aktueller Arbeitsordner

 Commit: Ein gespeicherter Zustand

Ulrich Radig Seite 5

Git Schulung - Einsteiger

3. Die wichtigsten Git-Befehle (60 Minuten)

Grundprinzip
Git arbeitet in drei Stufen: 1. Dateien ändern 2. Änderungen vormerken 3. Änderungen
speichern

git status
Zeigt jederzeit: - Welche Dateien geändert wurden - Welche Dateien für den Commit
vorgemerkt sind

git status

git add
Markiert Dateien für den nächsten Commit.

git add main.c

Oder alle Dateien:

git add .

git commit
Speichert den aktuellen Stand dauerhaft.

git commit -m "Initiale Version"

git log
Zeigt die Commit-Historie.

git log --oneline

Typischer Ablauf
git status
git add .
git commit -m "Beschreibung der Änderung"

Ulrich Radig Seite 6

Git Schulung - Einsteiger

4. Branches verstehen (45 Minuten)

Was ist ein Branch?
Ein Branch ist ein alternativer Entwicklungszweig. - Er zeigt auf einen bestimmten Commit -
Änderungen im Branch beeinflussen main nicht

Warum Branches sinnvoll sind
 Neue Funktionen testen

 Fehler beheben

 Experimente ohne Risiko

Branch erstellen und wechseln
git switch -c feature-test

Änderungen im Branch
 Dateien ändern

 Commit erstellen

Zurück nach main und mergen
git switch main
git merge feature-test

Merge-Konflikte
Konflikte entstehen, wenn: - Die gleiche Zeile in zwei Branches geändert wurde

Git stoppt dann und bittet um eine Entscheidung.

Ulrich Radig Seite 7

Git Schulung - Einsteiger

5. Git vs. GitHub vs. GitLab

Git
Git ist ein lokales Versionsverwaltungssystem. - Läuft auf deinem Rechner - Funktioniert ohne
Internet - Speichert die komplette Projekt-Historie

Git kann: - Commits - Branches - Merges - Tags

Git kann nicht: - Zusammenarbeit im Web - Benutzerverwaltung - Issue-Tracking

GitHub
GitHub ist eine Online-Plattform für Git-Repositories.

Eigenschaften: - Web-Oberfläche - Zusammenarbeit im Team - Pull Requests - Issues - CI/CD
(GitHub Actions)

Typische Nutzung: - Open-Source-Projekte - Private Projekte - Kleine bis mittlere Teams

GitLab
GitLab ist ebenfalls eine Git-Plattform, aber stärker auf Teams und Firmen ausgelegt.

Eigenschaften: - Cloud oder selbst hostbar - Integriertes CI/CD - Benutzer- und
Rechteverwaltung

Typische Nutzung: - Firmenprojekte - Interne Repositories - Embedded- und Industrieprojekte

Vergleich

Thema Git GitHub GitLab

Läuft lokal ✅ ❌ ❌

Internet nötig ❌ ✅ ✅

Versionsverwaltu
ng

✅ ✅ ✅

Web-Oberfläche ❌ ✅ ✅

Teamarbeit ❌ ✅ ✅

Selbst hosten ❌ ❌ ✅

CI/CD ❌ ✅ ✅

Merksatz

Git ist das Werkzeug – GitHub und GitLab sind die Plattformen.

Ulrich Radig Seite 8

Git Schulung - Einsteiger

6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)

Was ist ein Remote?
Ein Remote ist ein Repository auf einem Server. - GitHub - GitLab - Firmeninterner Server

Wichtige Begriffe
 clone: Projekt herunterladen

 pull: Änderungen holen

 push: Änderungen senden

Repository klonen
git clone <repo-url>

Änderungen holen
git pull

Änderungen senden
git push

Typische Fehler
 Push abgelehnt → vorher git pull

 Falscher Branch → Branch prüfen

Ulrich Radig Seite 9

Git Schulung - Einsteiger

7. Fehler beheben & Sicherheit (ca. 35 Minuten)

Änderungen an Dateien verwerfen
git restore datei.txt

Letzten Commit korrigieren
git reset --soft HEAD~1

Änderungen rückgängig machen (sicher)
git revert <commit-id>

Wichtige Regel

Was gepusht wurde, sollte nicht mit reset geändert werden.

Ulrich Radig Seite 10

Git Schulung - Einsteiger

8. Tags & Versionen (v1.0, v1.1)

Wozu Tags?
Tags markieren feste Versionen im Projektverlauf.

Typische Einsatzfälle: - Firmware-Release (v1.0, v1.1) - Software-Versionen - reproduzierbare
Builds

Ein Tag zeigt immer auf einen bestimmten Commit.

Tag erstellen
git tag v1.0

Tag mit Beschreibung (empfohlen)
git tag -a v1.1 -m "Bugfix Release"

Tags anzeigen
git tag

Tags pushen
Standardmäßig werden Tags nicht automatisch gepusht.

git push origin v1.1

Oder alle Tags:

git push origin --tags

Embedded-Hinweis
 Tag = exakt reproduzierbarer Firmware-Stand

 Sehr wichtig für Support & Fehlersuche

Ulrich Radig Seite 11

Git Schulung - Einsteiger

9. Best Practices & Abschluss

Best Practices
 Kleine, saubere Commits

 Sinnvolle Commit-Messages

 .gitignore für:

o Build-Ordner (Embedded)

o node_modules (Web)

Abschluss
 Fragen klären

 Nächste Schritte aufzeigen

Anhang – Spickzettel
git status – aktueller Zustand
git add – Änderungen vormerken
git commit – Änderungen speichern
git log – Historie anzeigen
git switch – Branch wechseln
git pull – Änderungen holen
git push – Änderungen senden
git tag – Version markieren

Ulrich Radig Seite 12

Git Schulung - Einsteiger

================================

PDF-HINWEISE & STRUKTUR

================================

Trainer-Version vs. Teilnehmer-Version

Teilnehmer-Version

Diese Version ist für Selbststudium und Nachschlagen gedacht.

Merkmale: - Erklärtexte vollständig - Beispiele und Merksätze - Übungen ohne
Lösung

Trainer-Version

Diese Version enthält zusätzliche Hinweise für die Durchführung.

Zusätzlich enthalten: - Trainer-Notizen - typische Fragen - empfohlene
Reihenfolge - Zeitmanagement-Hinweise

Empfehlung: - Teilnehmer bekommen die Teilnehmer-Version - Trainer arbeitet
mit der Trainer-Version

Ulrich Radig Seite 13

Git Schulung - Einsteiger

Übungsaufgaben

Kapitel 1 – Git verstehen

Trainer-Notizen
 Teilnehmern klar machen: Git schützt vor Datenverlust

 Angst nehmen: Git kann fast nichts „kaputt machen”

Übung 1: - Erkläre in eigenen Worten den Unterschied zwischen Git und GitHub - Warum
funktioniert Git auch ohne Internet?

Kapitel 2 – Repository

Trainer-Notizen
 .git nicht anfassen oder löschen

 Betonung: Git verändert Dateien nicht automatisch

Übung 2: 1. Lege ein neues Verzeichnis an 2. Initialisiere ein Git-Repository 3. Prüfe den Status

Kapitel 3 – Commits

Trainer-Notizen
 Immer wieder git status zeigen

 Commit-Messages erklären wie ein Änderungsprotokoll

Übung 3: 1. Lege eine Datei an (main.c oder index.html) 2. Erstelle drei Commits mit
sinnvollen Nachrichten 3. Zeige die Historie an

Kapitel 4 – Branches

Trainer-Notizen
 Konflikte bewusst erzeugen

 Zeigen, dass Konflikte lösbar sind

Übung 4: 1. Erstelle einen Feature-Branch 2. Ändere eine Datei 3. Merge den Branch zurück
nach main

Ulrich Radig Seite 14

Git Schulung - Einsteiger

Kapitel 5 – GitHub / GitLab

Trainer-Notizen
 Diese Abgrenzung nimmt viel Verwirrung

 Erst Git erklären, dann Plattform

Übung 5: 1. Klone ein Repository 2. Ändere eine Datei 3. Push die Änderung

Kapitel 6 – Fehler beheben

Trainer-Notizen
 HTTPS für Einsteiger empfehlen

 Remote als “gemeinsamen Treffpunkt” erklären

Übung 6: 1. Ändere eine Datei 2. Verwerfe die Änderung mit git restore

Kapitel 7 – Tags

Trainer-Notizen
 Unterschied reset vs. revert klar machen

 Sicherheit betonen

Trainer-Notizen
 Tags sind read-only Markierungen

 Nicht für tägliche Entwicklung nutzen

Übung 7: 1. Erstelle einen Tag v1.0 2. Erstelle einen annotierten Tag v1.1 3. Zeige alle Tags an

Ulrich Radig Seite 15

Git Schulung - Einsteiger

Release-Workflow – Tag → ZIP → Weitergabe

Ziel

Einen klar definierten Stand weitergeben (z. B. Firmware oder Web-Release).

Schritt 1 – Sauberen Stand prüfen

git status

Ergebnis sollte sein:

working tree clean

Schritt 2 – Tag setzen

git tag -a v1.0 -m "Release v1.0"

Schritt 3 – Tag pushen

git push origin v1.0

Schritt 4 – ZIP aus Tag erzeugen

git archive --format=zip v1.0 -o projekt-v1.0.zip

Ergebnis

 ZIP enthält exakt den getaggten Stand

 Keine Build-Artefakte

 Reproduzierbar

Embedded-Hinweis

 Ideal für Firmware-Weitergabe

 Support kann immer exakt diesen Stand auschecken

Ulrich Radig Seite 16

	Git-Schulung – Einsteiger
	Ziel der Schulung
	Voraussetzungen
	1. Einstieg – Was ist Git? (ca. 20 Minuten)
	Was ist das Problem ohne Git?
	Was Git löst
	Was Git ist
	Was Git nicht ist
	Merksatz

	2. Git installieren & erstes Repository (30 Minuten)
	Installation
	Prüfen der Installation
	Erstes Repository erstellen
	Wichtige Begriffe

	3. Die wichtigsten Git-Befehle (60 Minuten)
	Grundprinzip
	git status
	git add
	git commit
	git log
	Typischer Ablauf

	4. Branches verstehen (45 Minuten)
	Was ist ein Branch?
	Warum Branches sinnvoll sind
	Branch erstellen und wechseln
	Änderungen im Branch
	Zurück nach main und mergen
	Merge-Konflikte

	5. Git vs. GitHub vs. GitLab
	Git
	GitHub
	GitLab
	Vergleich
	Merksatz

	6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)
	Was ist ein Remote?
	Wichtige Begriffe
	Repository klonen
	Änderungen holen
	Änderungen senden
	Typische Fehler

	7. Fehler beheben & Sicherheit (ca. 35 Minuten)
	Änderungen an Dateien verwerfen
	Letzten Commit korrigieren
	Änderungen rückgängig machen (sicher)
	Wichtige Regel

	8. Tags & Versionen (v1.0, v1.1)
	Wozu Tags?
	Tag erstellen
	Tag mit Beschreibung (empfohlen)
	Tags anzeigen
	Tags pushen
	Embedded-Hinweis

	9. Best Practices & Abschluss
	Best Practices
	Abschluss

	Anhang – Spickzettel
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen
	Trainer-Notizen

