
Git Schulung - Einsteiger

Git-Schulung – Einsteiger

Präsenz · 4 Stunden 

Version: 1.0
Zielgruppe: Einsteiger
Format: Präsenz / Selbststudium

Ulrich Radig Seite 1



Git Schulung - Einsteiger

Inhaltsverzeichnis

Git-Schulung – Einsteiger................................................................................................................1

Ziel der Schulung.......................................................................................................................3

Voraussetzungen.......................................................................................................................3

1. Einstieg – Was ist Git? (ca. 20 Minuten)................................................................................4

2. Git installieren & erstes Repository (30 Minuten).................................................................5

3. Die wichtigsten Git-Befehle (60 Minuten)..............................................................................6

4. Branches verstehen (45 Minuten).........................................................................................7

5. Git vs. GitHub vs. GitLab........................................................................................................8

6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)......................................................9

7. Fehler beheben & Sicherheit (ca. 35 Minuten)....................................................................10

8. Tags & Versionen (v1.0, v1.1)..............................................................................................11

9. Best Practices & Abschluss...................................................................................................12

Anhang – Spickzettel.....................................................................................................................12

Ulrich Radig Seite 2



Git Schulung - Einsteiger

Ziel der Schulung
Nach dieser Schulung können die Teilnehmer: - Git im Alltag sicher nutzen - Änderungen sauber 
versionieren - Branches verstehen und anwenden - Mit GitHub / GitLab arbeiten - Typische 
Fehler selbst beheben

Wichtig: Fokus auf Praxis, kein unnötiger Theorieballast.

Voraussetzungen
 Laptop (Windows / macOS / Linux)

 Internetzugang

 Texteditor (VS Code empfohlen, aber nicht Pflicht)

 Keine Git-Vorkenntnisse nötig
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1. Einstieg – Was ist Git? (ca. 20 Minuten)

Was ist das Problem ohne Git?
Viele Projekte starten ohne Versionsverwaltung. Typische Situationen: - Mehrere Kopien eines 
Projekts: projekt_final, projekt_final2, projekt_final_neu - Niemand weiß, welche 
Version aktuell ist - Änderungen lassen sich nicht sauber zurückverfolgen - Fehler lassen sich 
nicht einfach rückgängig machen

Was Git löst
Git speichert den Verlauf eines Projekts: - Jede Änderung ist dokumentiert - Man kann jederzeit 
zu einem früheren Stand zurück - Mehrere Personen können parallel arbeiten

Was Git ist
 Ein lokales Versionsverwaltungssystem

 Läuft auf deinem Rechner

 Funktioniert auch ohne Internet

Was Git nicht ist
 Kein Backup-System

 Kein GitHub

 Kein Projektmanagement-Tool

Merksatz

Git ist eine Zeitmaschine für Dateien.

 💡 Wissenswertes: Was bedeutet „Git“?
Git ist kein Akronym, sondern einfach der Name eines Werkzeugs zur Versionsverwaltung.
Der Name stammt von Linus Torvalds, dem Erfinder von Git.
Er sagte dazu sinngemäß:
„Ich bin ein egoistischer Bastard und nenne alle meine Projekte nach mir.“
Im britischen Englisch bedeutet „git“ umgangssprachlich:

 Nervensäge
 Idiot
 Trottel

→ ironisch gemeint, typisch Linus.
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2. Git installieren & erstes Repository (30 Minuten)

Installation
Git muss einmalig installiert werden.

Windows - Download von git-scm.com - Standardoptionen sind ausreichend

macOS - Installation über Xcode Command Line Tools oder Homebrew

Linux - Installation über den Paketmanager

Prüfen der Installation
git --version

Wenn eine Versionsnummer erscheint, ist Git korrekt installiert.

Erstes Repository erstellen
Ein Repository ist ein Ordner, der von Git überwacht wird.

mkdir git-demo
cd git-demo
git init

Nach git init erstellt Git einen versteckten Ordner .git. Dort speichert Git die komplette 
Historie.

Wichtige Begriffe
 Repository: Ein Projekt unter Git-Kontrolle

 Working Directory: Dein aktueller Arbeitsordner

 Commit: Ein gespeicherter Zustand
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3. Die wichtigsten Git-Befehle (60 Minuten)

Grundprinzip
Git arbeitet in drei Stufen: 1. Dateien ändern 2. Änderungen vormerken 3. Änderungen 
speichern

git status
Zeigt jederzeit: - Welche Dateien geändert wurden - Welche Dateien für den Commit 
vorgemerkt sind

git status

git add
Markiert Dateien für den nächsten Commit.

git add main.c

Oder alle Dateien:

git add .

git commit
Speichert den aktuellen Stand dauerhaft.

git commit -m "Initiale Version"

git log
Zeigt die Commit-Historie.

git log --oneline

Typischer Ablauf
git status
git add .
git commit -m "Beschreibung der Änderung"
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4. Branches verstehen (45 Minuten)

Was ist ein Branch?
Ein Branch ist ein alternativer Entwicklungszweig. - Er zeigt auf einen bestimmten Commit - 
Änderungen im Branch beeinflussen main nicht

Warum Branches sinnvoll sind
 Neue Funktionen testen

 Fehler beheben

 Experimente ohne Risiko

Branch erstellen und wechseln
git switch -c feature-test

Änderungen im Branch
 Dateien ändern

 Commit erstellen

Zurück nach main und mergen
git switch main
git merge feature-test

Merge-Konflikte
Konflikte entstehen, wenn: - Die gleiche Zeile in zwei Branches geändert wurde

Git stoppt dann und bittet um eine Entscheidung.
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5. Git vs. GitHub vs. GitLab

Git
Git ist ein lokales Versionsverwaltungssystem. - Läuft auf deinem Rechner - Funktioniert ohne 
Internet - Speichert die komplette Projekt-Historie

Git kann: - Commits - Branches - Merges - Tags

Git kann nicht: - Zusammenarbeit im Web - Benutzerverwaltung - Issue-Tracking

GitHub
GitHub ist eine Online-Plattform für Git-Repositories.

Eigenschaften: - Web-Oberfläche - Zusammenarbeit im Team - Pull Requests - Issues - CI/CD 
(GitHub Actions)

Typische Nutzung: - Open-Source-Projekte - Private Projekte - Kleine bis mittlere Teams

GitLab
GitLab ist ebenfalls eine Git-Plattform, aber stärker auf Teams und Firmen ausgelegt.

Eigenschaften: - Cloud oder selbst hostbar - Integriertes CI/CD - Benutzer- und 
Rechteverwaltung

Typische Nutzung: - Firmenprojekte - Interne Repositories - Embedded- und Industrieprojekte

Vergleich

Thema Git GitHub GitLab

Läuft lokal ✅ ❌ ❌

Internet nötig ❌ ✅ ✅

Versionsverwaltu
ng

✅ ✅ ✅

Web-Oberfläche ❌ ✅ ✅

Teamarbeit ❌ ✅ ✅

Selbst hosten ❌ ❌ ✅

CI/CD ❌ ✅ ✅

Merksatz

Git ist das Werkzeug – GitHub und GitLab sind die Plattformen.
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6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)

Was ist ein Remote?
Ein Remote ist ein Repository auf einem Server. - GitHub - GitLab - Firmeninterner Server

Wichtige Begriffe
 clone: Projekt herunterladen

 pull: Änderungen holen

 push: Änderungen senden

Repository klonen
git clone <repo-url>

Änderungen holen
git pull

Änderungen senden
git push

Typische Fehler
 Push abgelehnt → vorher git pull

 Falscher Branch → Branch prüfen
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7. Fehler beheben & Sicherheit (ca. 35 Minuten)

Änderungen an Dateien verwerfen
git restore datei.txt

Letzten Commit korrigieren
git reset --soft HEAD~1

Änderungen rückgängig machen (sicher)
git revert <commit-id>

Wichtige Regel

Was gepusht wurde, sollte nicht mit reset geändert werden.
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8. Tags & Versionen (v1.0, v1.1)

Wozu Tags?
Tags markieren feste Versionen im Projektverlauf.

Typische Einsatzfälle: - Firmware-Release (v1.0, v1.1) - Software-Versionen - reproduzierbare 
Builds

Ein Tag zeigt immer auf einen bestimmten Commit.

Tag erstellen
git tag v1.0

Tag mit Beschreibung (empfohlen)
git tag -a v1.1 -m "Bugfix Release"

Tags anzeigen
git tag

Tags pushen
Standardmäßig werden Tags nicht automatisch gepusht.

git push origin v1.1

Oder alle Tags:

git push origin --tags

Embedded-Hinweis
 Tag = exakt reproduzierbarer Firmware-Stand

 Sehr wichtig für Support & Fehlersuche
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9. Best Practices & Abschluss

Best Practices
 Kleine, saubere Commits

 Sinnvolle Commit-Messages

 .gitignore für:

o Build-Ordner (Embedded)

o node_modules (Web)

Abschluss
 Fragen klären

 Nächste Schritte aufzeigen

Anhang – Spickzettel
git status      – aktueller Zustand
git add         – Änderungen vormerken
git commit      – Änderungen speichern
git log         – Historie anzeigen
git switch      – Branch wechseln
git pull        – Änderungen holen
git push        – Änderungen senden
git tag         – Version markieren
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================================

PDF-HINWEISE & STRUKTUR

================================

Trainer-Version vs. Teilnehmer-Version

Teilnehmer-Version

Diese Version ist für Selbststudium und Nachschlagen gedacht.

Merkmale: - Erklärtexte vollständig - Beispiele und Merksätze - Übungen ohne 
Lösung

Trainer-Version

Diese Version enthält zusätzliche Hinweise für die Durchführung.

Zusätzlich enthalten: - Trainer-Notizen - typische Fragen - empfohlene 
Reihenfolge - Zeitmanagement-Hinweise

Empfehlung: - Teilnehmer bekommen die Teilnehmer-Version - Trainer arbeitet 
mit der Trainer-Version
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Übungsaufgaben

Kapitel 1 – Git verstehen

Trainer-Notizen
 Teilnehmern klar machen: Git schützt vor Datenverlust

 Angst nehmen: Git kann fast nichts „kaputt machen”

Übung 1: - Erkläre in eigenen Worten den Unterschied zwischen Git und GitHub - Warum 
funktioniert Git auch ohne Internet?

Kapitel 2 – Repository

Trainer-Notizen
 .git nicht anfassen oder löschen

 Betonung: Git verändert Dateien nicht automatisch

Übung 2: 1. Lege ein neues Verzeichnis an 2. Initialisiere ein Git-Repository 3. Prüfe den Status

Kapitel 3 – Commits

Trainer-Notizen
 Immer wieder git status zeigen

 Commit-Messages erklären wie ein Änderungsprotokoll

Übung 3: 1. Lege eine Datei an (main.c oder index.html) 2. Erstelle drei Commits mit 
sinnvollen Nachrichten 3. Zeige die Historie an

Kapitel 4 – Branches

Trainer-Notizen
 Konflikte bewusst erzeugen

 Zeigen, dass Konflikte lösbar sind

Übung 4: 1. Erstelle einen Feature-Branch 2. Ändere eine Datei 3. Merge den Branch zurück 
nach main
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Kapitel 5 – GitHub / GitLab

Trainer-Notizen
 Diese Abgrenzung nimmt viel Verwirrung

 Erst Git erklären, dann Plattform

Übung 5: 1. Klone ein Repository 2. Ändere eine Datei 3. Push die Änderung

Kapitel 6 – Fehler beheben

Trainer-Notizen
 HTTPS für Einsteiger empfehlen

 Remote als “gemeinsamen Treffpunkt” erklären

Übung 6: 1. Ändere eine Datei 2. Verwerfe die Änderung mit git restore

Kapitel 7 – Tags

Trainer-Notizen
 Unterschied reset vs. revert klar machen

 Sicherheit betonen

Trainer-Notizen
 Tags sind read-only Markierungen

 Nicht für tägliche Entwicklung nutzen

Übung 7: 1. Erstelle einen Tag v1.0 2. Erstelle einen annotierten Tag v1.1 3. Zeige alle Tags an
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Release-Workflow – Tag → ZIP → Weitergabe

Ziel

Einen klar definierten Stand weitergeben (z. B. Firmware oder Web-Release).

Schritt 1 – Sauberen Stand prüfen

git status

Ergebnis sollte sein:

working tree clean

Schritt 2 – Tag setzen

git tag -a v1.0 -m "Release v1.0"

Schritt 3 – Tag pushen

git push origin v1.0

Schritt 4 – ZIP aus Tag erzeugen

git archive --format=zip v1.0 -o projekt-v1.0.zip

Ergebnis

 ZIP enthält exakt den getaggten Stand

 Keine Build-Artefakte

 Reproduzierbar

Embedded-Hinweis

 Ideal für Firmware-Weitergabe

 Support kann immer exakt diesen Stand auschecken
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